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Abstract

We often deal with outliers in air quality data. By fitting our model to all the data,
we often put more emphasis on outliers. In this paper, we implement stochastic
gradient boosting with a squared error epsilon insensitive loss function. The algo-
rithm is carried out in R. We experimented on the Los Angeles Ozone pollution
data [2] with multiple linear regression, boosting with least squares, and boost-
ing with the new loss function. We found that both boosting methods to be more
robust towards outliers than multiple linear regression. However, we cannot con-
clude that the new loss function is more robust than the traditional least squares
loss.

1 Introduction

Although multiple linear regression is a quick and simple method for regression, it is not very robust
to outliers (or extreme values) in data. The goal of this paper is to implement stochastic gradient
boosting with a new robust loss function, in which we call squared error epsilon insensitive (SEEI)
loss function. We also try to show its effectiveness towards fitting data with outliers.

In this paper, we deal with a regression problem with a continuous response variable and roughly
11 explanatory variables. Further description of the data can be found in Section 2 . Although it is
difficult to visualize outliers with a feature space of 11 dimensions, we give two examples to try to
indicate outliers in the data.

The stochastic gradient boosting algorithm is first developed by Friedman in 1998 [4] . It iteratively
fits simple models and additively combines them to provide predictions. In this paper, we use re-
gression trees as our simple models. We describe the algorithm in section 3.1 . The stochastic
gradient boosting method uses a least squares loss function. The SEEI loss still uses least squares
but any residuals falling within a pre-specified epsilon margin are not penalized. This allows the
model to emphasize its fit towards the overall data than the extreme values. Section 4 provides the
description of the loss function. We also show how SEEI can be implemented in R.

Finally we experimented on the Los Angeles Ozone Pollution data set [2] to compare multiple
linear regression, boosted regression with least squares, and boosted regression with optimal values
of epsilon.

2 Data

An example of a data set that contains outliers in the observations is the Los Angeles Ozone pol-
lution data. There are 11 explanatory variables and 1 response variable. We have 330 complete
observations, so essentially we have a 330 by 12 matrix of data we want to fit. See Table 1.
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Explanatory Variables Data Type
1. Month: 1 = January, ..., 12 = December Discrete
2. Day of month Discrete
3. Day of week: 1 = Monday, ..., 7 = Sunday Discrete
4. 500 millibar pressure height (m) measured at Vandenberg AFB Continuous
5. Wind speed (mph) at Los Angeles International Airport (LAX) Continuous
6. Humidity (%) at LAX Continuous
7. Temperature (degrees F) measured at Sandburg, CA Continuous
8. Inversion base height (feet) at LAX Continuous
9. Pressure gradient (mm Hg) from LAX to Daggett, CA Continuous
10. Inversion base temperature (degrees F) at LAX Continuous
11. Visibility (miles) measured at LAX Continuous

Table 1: Explanatory Variables for Los Angeles Ozone Pollution [2]

The response variable of interest in our data set is daily maximum one-hour-average ozone reading
(denoted as maximum O3). A kernel density plot of the maximum O3 response variable is shown
in Figure 1 (right). From this plot, we could see the distribution of the response variable is skewed
to the left. This could indicate that there are outliers on the upper quantile of maximum O3. We
also fitted a multiple linear regression model to the full data. The predictions (or fitted values)
are computed on each observation, and the observation versus prediction scatter plot is shown in
Figure 1 (left). The plot shows that the linear regression fit seems to perform worse for observations
in the upper quantiles. Therefore, we suspect that there are outliers in the upper quantiles of the
data.
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Figure 1: Left Plot: Observation versus Prediction Based on Fitting Multiple Linear Regression.
Right Plot: Kernel Density Plot of Maximum O3 Response Variable

3 Introduction to Boosting

The technique of boosting improves the model performance by iteratively fitting simple models and
combining them to provide predictions [3]. For example, we used regression trees for our simple
models. At each iteration, the model gradually emphasizes the fit towards observations that are fit
poorly to the current combination of trees. The fitted values are updated on each iteration based on
the contribution of a newly fitted tree. We can take smaller steps at each iteration by updating only a
fraction of the function estimates of the new tree. It usually improves the model fit, because it allows
the model to correct itself on any additional tree which overfits the optimal estimation. Lastly, at
each iteration, we should only fit a chunk (usually 50%) of the data to each tree. It has been shown
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to reduce the variance of function estimates [4]. Therefore, predictions can be greatly improved by
including this subsampling step for each iteration. Boosting is similar to Random Forest, except
Random Forest uses a bagging type of method on regression trees. Its goal is to minimize variance
of the predictions by averaging all the simple models. Whereas boosting updates predictions on each
iteration. Both methods generally lead to better predictions upon fitting regression trees.

3.1 Stochastic Gradient Boosting Algorithm

We provide a description of the boosting algorithm as derived in [4] and implemented in package
gbm which is written in R and C++ by Greg Ridgeway [5]. We first introduce a few input parameters.
We denote T as the number of trees to fit in the overall model. Let K denote the fixed depth for each
tree that is grown. We denote λ as the learning rate. We let Ψ be the loss function of interest. Finally,
let the subsampling rate be p. The stochastic gradient boosting algorithm implemented in gbm is as
follows.

Initialize current estimate, f̂(x) to be a constant, such that f̂(x) = argmin
ρ

∑N
i=1 Ψ(yi, ρ) where Ψ

is a loss function of interest.

For each iteration, t = 1, . . . , T ,

1. Compute the negative gradient for each data point with the current estimate and denote by
z.

zi =
−∂

∂f(xi)
Ψ(yi, f(xi))

∣∣∣∣
f(xi)=f̂(xi)

2. Sample without replacement p∗N observations from the data, where N is the total number
of observations and p is the subsampling rate between 0 and 1.

3. Using only the sampled data, fit a regression tree with a fixed depth K on the negative
gradients calculated in step 1.

4. Compute the optimal terminal estimates at each node (ρ1, . . . , ρ2K ) based on loss function
Ψ.

ρk = argmin
ρ

∑
xi∈Sk

Ψ(yi, f̂(xi) + ρ)

where Sk is the set of x that define the terminal node k.

5. Update f̂(x) for all x by,
f̂(x)← f̂(x) + λρk(x)

where k(x) is the index of the terminal node where x belongs to.

A similar description of this algorithm can be found in [5] .

3.2 Cross-Validation

In order to calculate the optimal number of trees in the boosting model, a cross validation method
is implemented. The data is randomly partitioned into C slices. The gradient boosting algorithm is
fit C times with each slice left out. The prediction mean squared error is calculated on the slice of
data that is left out for each boosted model fit. The average cross-validation error is calculated on
all slices, and the optimal number of trees is selected based on the lowest error.

4 Squared Error Epsilon Insensitive Loss Function (SEEI)

So far we haven’t given a form for the loss function Ψ mentioned in the boosting algorithm. In
most regression type problems, the least squares loss function is used. We implement a robust loss
function called squared error epsilon insensitve abbreviated as SEEI. The method is more robust
in that it tries to emphasize fits towards smaller residuals. It penalizes similarly to traditional least
squares, except any squared residuals that are greater than ε are ignored in the penalty function.
SEEI is defined as,

Ψ(x, y) = max{0, (x− y)2 − ε}
The loss function is shown in Figure 2
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Figure 2: Squared Error Epsilon Insensitive Loss Function with ε = 1

4.1 Convexity of Sum of Squared Errors Epsilon Insensitive

Similar to minimizing the residual sum of squared errors for most regression methods, our goal is
to minimize the residual sum of squared errors with the epsilon insensitive loss. We can restrict
our calculations to fit a constant linear model, because the terminal node estimates in the boosting
algorithm only requires a constant fit.

Let r = (y − 1µ̂) and D = diag(1((y − 1µ̂)2 > ε)) where r is the vector of residuals, y is vector
of response, and 1 is a vector of ones. The objective function, S = (r · D)T (r · D) is what we
seek to minimize in a regression model under the SEEI loss function. If we can show that S can
be written in a quadratic form and the hessian is semi-positive definite, then we have convexity [6].
Since D ·D = D, we minimize S = rTDr. So, S is trivially a quadratic form. Now, if we expand
S, we get,

S = yTDy − yTD1µ− µ1TDy + µ21TD1

We now take the partial differentiation with respect to µ.
∂

∂µ
S(µ) = −2yTD1 + 2µ1TD1

Taking the second derivative of the objective function, we get,

∂2

∂µ2
S(µ) = 21TD1

The hessian is therefore scalar and always greater or equal to 0. It is equal to 0 only if all squared
residuals lie within the ±ε margin. S is therefore almost always strictly convex, and any gradient
descent type algorithm to solve for µ will eventually converge to a global minimum of S.

4.2 Smoothness of Sum of Squared Error Epsilon Insensitive

Recall the squared error with epsilon insensitive (SEEI) loss function in Figure 2. The function
appears to have a rough edge when the residual lies at ε. However, when we take the sum, we get
a smoother function. Moreover, the boosting algorithm only requires a constant fit. An illustration
of the smoothness is provided in Figure 3 . In the sum of absolute errors plot, there still remains a
few rough edges especially near the optimal value. However, even with ε = 30, the sum of squared
residuals with epsilon insensitive remain very smooth compared to the original squared error loss.

The reason to mention the convexity and smoothness of the sum of SEEI loss is to show that the
objective function, S, can be solved by newton type methods, in particular, Newton-Raphson. This
is relevant in the next section which describes how to implement the SEEI loss to the boosting
algorithm.
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Figure 3: Comparison of the smoothness between loss functions on the residuals for Squared Error,
Squared Error with Epsilon Insensitive (ε = 30), and Absolute Error.

5 Implementing SEEI Loss into Boosting Alogirithm

5.1 Implementation

In part 4 of the gradient boosting algorithm, we need to solve the terminal node estimates for the
fitted regression tree. For the traditional least squares loss function, the estimates are already solved
by the regression tree. We need to modify the terminal node estimates based on the SEEI loss
function. Note the terminal node estimates are simply constant fits.

At each new tree we fit, recall that we calculate,

ρk = argmin
ρ

∑
xi∈Sk

Ψ(yi, f̂(xi) + ρ)

for each terminal node of the tree where Ψ(x, y) = max{0, (x−y)2−ε}, and k = 1, . . . , 2K where
K is the depth of the tree. Perform Newton-Raphson to find ρk for each terminal node:

For k = 1, . . . , 2K , iterate until ρk converges suffiently based on some tolerance level.

1. Since the fitted regression tree contains the mean estimate of each terminal node, set initial
ρk to be the mean estimates of each respective terminal node.

2. Compute D = diag(1((y − ρk)2 > ε))

3. Compute g = −2yTD1 + 2µ1TD1 where g is the gradient of objective function
∑

Ψ.

4. Compute H = 21TD1 where H is the hessian matrix of the objective function
∑

Ψ.

5. Update ρk ← ρk −H−1g

In our code, we set the tolerance level to be 10−2 on the absolute difference between ρk previous
and ρk current. The next iteration of the boosting algorithm will continue to correct the error fitted
by the past combinations of trees. So, it is possible to lower the tolerance to increase the speed of
the algorithm. We can also set a maximum number of iterations.

5.2 Choosing Epsilon in SEEI by Cross-validation

Choosing the epsilon to use for the squared error epsilon insensitive loss function is similar to finding
the optimal number of trees in the boosting algorithm. We can provide a short sequence of epsilon
values, for example, 3, 6, 9, and 12. Each of these epsilon values are used in fitting boosting models
using cross-validation to calculate prediction mean squared error based on least squares loss. The
epsilon value yielding the smallest prediction mean squared error is chosen.
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5.3 R Packages

We implemented the stochastic gradient boosting algorithm entirely in R. The code can be found
from the following github link, https://github.com/kenlau177/cpsc546. The main file is called
”main.R”. We cleaned up the data by removing missing observations. Here we will acknowledge
the use of a few packages in implementing SEEI loss in the boosting algorithm. Regression trees are
fit by ”rpart” [8] . Cross-validation is run in parallel using ”snowfall” [7]. We used Hadley’s vector-
ization and matrix reshaping packages, ”plyr” [9] and ”reshape2” [10] respectively. For plotting, we
used ”ggplot2” [11] .

6 Experimentation and Results

6.1 Model Comparison

We used the Los Angeles Ozone Pollution data. The data is first cleaned up by removing missing
observations. We then arbitrarily split the data 5 times into a training and testing set using 75%
and 25% of the data respectively. Pseudo-random numbers were generated by R’s set.seed function
to retain the split for future use. We experimented on these 5 instances of the data. In addition
to optimizing the epsilon in SEEI and number of trees, we also optimized for the fixed depth of
the regression trees and learning rate λ. For each instance of the training data, cross-validation
is performed and the combination of parameters of epsilon, number of trees, depth of tree, and
learning rate giving the lowest cross-validation error based on traditional squared error is chosen.
Using this optimal set of parameters, we fitted the full boosting model to the same training data.
After the model is fitted, we used the testing data to make predictions. We compared the multiple
linear regression, boosting with least squares, and boosting with the SEEI loss. Observation versus
prediction scatter plots are provided in Figure 4 . We also calculated mean squared prediction error
on certain portions of the data. We calculated the errors based on test observations greater than 75%
quantile, test observations less than 60% quantile, and in between the 10% and 75% quantile of
test observations. The results are provided in Table 2 . Recall from Section 2 on the data set, we
expected the outliers are in the upper quantiles of the data. Therefore, we would be interested to find
improvements from using SEEI loss for quantiles below 60%.

Combinations Model Upper 75% Lower 60% > 10% and < 75%
Combination 1 MLR 671.22 843.68 949.36
Combination 1 BRT LS 593.55 713.87 889.3
Combination 1 BRT SEEI 616.36 755.47 890.652
Combination 2 MLR 547.07 627.58 862.77
Combination 2 BRT LS 751.13 483.12 866.95
Combination 2 BRT SEEI 664.01 507.93 905.94
Combination 3 MLR 450.62 968.05 1045.08
Combination 3 BRT LS 419.39 821.38 1076.72
Combination 3 BRT SEEI 486.48 889.36 1127.92
Combination 4 MLR 581.09 559.97 679.43
Combination 4 BRT LS 665.08 268.01 620.41
Combination 4 BRT SEEI 701.59 289.22 614.56
Combination 5 MLR 365.06 612.07 636.37
Combination 5 BRT LS 340.49 617.5 843.69
Combination 5 BRT SEEI 375.87 658.2 822.67

Table 2: Mean Squared Prediction Errors of Multiple Linear Regression (MLR), Boosted Regression
with LS (BRT LS), and Boosted Regression with SEEI (BRT SEEI) on the upper 75%, lower 60%,
and between 10% and 75% quantiles based on 5 combinations of the original data set split into
training and testing sets.
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Figure 4: Observation versus Prediction Plots of model fits. The first row of plots correspond to
the first randomization. The left plots are Multiple Linear Regression (lm) versus Boosting with
SEEI (brt sqep), and the right are Boosting with Least Squares (brt ls) versus Boosting with SEEI
(brt sqep). The 45◦ line is where true observations match predictions

6.2 Results

The left plots of Figure 4 correspond to MLR against BRT with SEEI. For the upper quantiles on the
test observations, the fits look similar for both the MLR and BRT with SEEI. However, for quantiles
below 50%, the fits appear to have improved for BRT with SEEI over MLR. Most of the points for
BRT with SEEI appear closer towards the 45◦ line which indicates a closer match between the true
observations with predictions. From the plots, it appears the BRT with SEEI fitted better for lower
quantiles whereas the BRT with LS fitted better for higher quantiles. However, the differences did
not look significant based on the plots.

In Table 2, for all 5 combinations of the data and for the lower 60% quantile, both the BRT LS
and BRT SEEI models had lower mean squared prediction errors (MSPE) than the MLR model.
For example, in combination 1, we found the MSPE for MLR to be 843.58, and the MSPE for
BRT with SEEI to be 755.47. This is 88.11 points improvement for BRT with SEEI. Whereas for
quantiles greater than 75%, there does not appear to be any significant differences between the three
models. So, the two BRT models were more robust to outliers and a better fit than the MLR model.
However, We could not find any significant differences between BRT with LS and BRT with SEEI.
For example, there are combinations of the data which gave lower MSPE for BRT with LS, and
some combinations that gave lower MSPE for BRT with SEEI. So, we could not conclude that using
SEEI for BRT was indeed a robust method over LS much less a better model than BRT with LS for
all quantiles of the data. We could only conclude that both the BRT methods improved the fit for the
test observations lower than the 60% quantile over multiple linear regression.

7 Conclusion

We described the gradient boosting regression method using the squared error epsilon insensitive
loss function. We claimed that this method is more robust and could fit better towards data with
outliers. We implemented the method in R, and we tested the method against multiple linear regres-
sion and boosting with least squares using the Los Angeles Ozone Pollution Data. We illustrated
two examples to show that there appeared to be outliers in the data for upper quantiles of the ozone
data. In our experiments, we were able to find both boosting methods improved the fits for quantiles
of ozone data below 60%. However, no significant differences were found between the boosting
method with least squares and squared error epsilon insensitive loss. We were able to show the
boosting method is more robust than multiple linear regression, but we could not show that the new
loss function is more robust than boosting with least squares.
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