
Automatic Modulation Recognition in
the 868 MHz Wireless Network using

Tree-Based Methods
by

Ken Lau

B.Sc., The University of British Columbia, 2013

A PROJECT SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in

The Faculty of Graduate Studies

(Statistics)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

June 19, 2015

c© Ken Lau 2015

Abstract

Wireless communication systems enable the transfer of data between de-
vices through the transmission of radio signals. These wireless devices often
transmit a variety of waveform types called modulation formats. Misidentifi-
cation of modulation formats between two communicating devices could lead
to undesirable delays in data transfer and inefficient energy consumption.
The role of automatic modulation recognition (AMR) is the identification of
the different modulations of transmitted signals. In this project, we explore
tree-based AMR methods in the 868 MHz frequency band. An existing work
implements a tree-based classifier that is constructed manually by feature in-
spection. We extend the recent approach by implementing classification tree
(CT) and random forest (RF) classifiers, as well as introducing an expanded
list of features. Performance is verified via a simulation at different signal
to noise ratios (SNR). Signal data is initially preprocessed, and features are
extracted and used to train each classifier. Improvements of 14% and 3%
success rates are found for RF and CT, respectively using all features and
at a SNR of 1 dB.

ii

Preface

This project is submitted in partial fulfillment of the requirements for a Mas-
ter of Science in Statistics. It contains work from January 2014 to Decem-
ber 2014 under the supervision of Lutz Lampe and Mat́ıas Salibián-Berrera
from the Electrical and Computer Engineering and Statistics Departments
at UBC.

iii

Table of Contents

Abstract . ii

Preface . iii

Table of Contents . iv

List of Tables . vi

List of Figures . vii

1 Introduction . 1
1.1 Other Related Work . 4

2 Data Simulation . 6
2.1 Transmitting Signals . 6

2.1.1 How to Transmit the BFSK-A Modulation 7
2.2 Obtaining the Received Signal 9
2.3 Feature Extraction . 10

2.3.1 Preprocessing . 10
2.3.2 Features From [2] . 11
2.3.3 Additional Features 12

3 Implementation . 16
3.1 Training Data . 16
3.2 Feature-Based Binary Tree 17
3.3 Classification Tree . 21

3.3.1 Classification Tree Implementation 22
3.3.2 Example . 25
3.3.3 Pruning . 29

3.4 Random Forest . 30
3.4.1 Advantages of Random Forest 31
3.4.2 Random Forest Implementation 32

iv

Table of Contents

3.4.3 Random Forest Feature Selection 33
3.5 Modifications for Noise Detection 34

4 Analysis and Results . 38
4.1 Analysis on Features From [2] 38
4.2 Analysis on All Features . 40
4.3 Further Discussion . 44

5 Conclusion . 46

Bibliography . 47

v

List of Tables

1.1 Weather prediction example. The feature variables are amount
of rain, humidity level, and percentage of sunshine today. The
class prediction variable is the weather for tomorrow consist-
ing of rainy, cloudy, or sunny. 3

2.1 Summary of feature variables. 15

3.1 Example of training data. 17
3.2 Thresholds determined by FBT. 19
3.3 Example of training data with noise class. 35

vi

List of Figures

1.1 Example of signal transfer . 2
1.2 Classifier for weather prediction example 3
1.3 Example of signal transfer with classifier 4
1.4 ANN visualization . 5

2.1 Modulations and their behaviors 7
2.2 Manchester encoding . 8
2.3 BFSK-A signal . 9
2.4 Constellation diagrams of BPSK and OQPSK 13
2.5 Magnitude spectrum at SNR of 11 dB. 14

3.1 Process of generating one observation of the training data . . 17
3.2 Flowchart of FBT . 18
3.3 Boxplot visualization of m1 for each modulation. 19
3.4 Worst-case analysis plot of m1 20
3.5 Intuitive example of tree split. 21
3.6 Impurity conditional expectation example. 24
3.7 Classification tree example step 0 25
3.8 Classification tree example step 1 26
3.9 Classification tree example step 2 27
3.10 Classification tree example step 3 27
3.11 Resulting tree of the simple classification tree algorithm ex-

ample. 28
3.12 Pruned example of the simple classification tree example. . . 30
3.13 Flowchart of CT. 31
3.14 Boxplot visualization of en for each modulation. 36
3.15 Worstcase plot of en. 36
3.16 Flowchart of FBT with noise signal. 37

4.1 Success rates based on features from [2] as a function of SNR. 38
4.2 SRs based on the features from [2] and seven classes. 39
4.3 Flowcharts of FBT and CT at a high SNR. 40

vii

List of Figures

4.4 Success rates of models proportional to signal to noise ratio
based on all features. 41

4.5 SRs based on all features and seven classes 42
4.6 Variable importance of random forest on all features. 43

viii

Chapter 1

Introduction

Wireless communication has become very important in our daily lives as Wifi
is pervasive at home, workplace, airports, and street corners. Wifi is aimed
at long-distance communication, and used for applications that require a
higher bandwidth and data transfer rate compared to most other wireless
networks. This project is concerned with a Zigbee network which is similar to
Wifi in the sense that Zigbee is also used for wireless communication. The
difference is that Zigbee is targeted at short-distance communication and
involves lower-powered and lower-data-rate applications. Examples of these
applications are home temperature and light sensors, security devices, and
wall-mounted switches. These applications do not require a high bandwidth,
thus have lower costs to maintain. Devices using Zigbee operate on the 868
MHz frequency band.

We give a simple example of how two devices in a network interact. For
simplicity, let us assume that data transfer is unidirectional, that is, signal is
strictly sent from one device to another and not in the reverse direction. The
bidirectional case is similar, but requires more work to explain. For example,
Figure 1.1 shows a home temperature device transmitting a signal to a heater
device. When the signal reaches the heater, data is extracted from the signal.
For instance, the extracted data might contain information about the current
temperature of the room, and so the heater adjusts the amount of electrical
energy converted to heat accordingly. In case the reader is interested in
wireless networks in general, chapter six of [1] provides detailed explanation
of networks.

The home temperature and heater devices are examples of devices that
use the 868 MHz frequency band. The devices generally transmit signals of
six different waveforms, which are often referred to as modulation types in
the Institute of Electronics Engineers (IEEE) literature. The job of the re-
ceiving device is to process the signal and identify which of the six waveforms
the signal belongs to, so that data can be extracted from the signal. The gen-
eral name for classifying modulations is automatic modulation recognition
(AMR). Classifiers take a set of feature variables and a single class variable,
and predict the class variable on future data. Say there is no classifier at

1

Chapter 1. Introduction

Figure 1.1: Example of signal transfer between two devices. Device 1 is a
home temperature device which transmit signals to a heater device which is
labeled as device 2.

the receiving device, an arbitrarily poor classifier can be constructed such
that it always identify the signals as one out of the six modulations. We
implement three different classifiers described in Section 3.

We provide a simple example involving a classifier to predict tomorrow’s
weather given some atmospheric attributes of today’s weather. The purpose
of this example is to introduce the idea of machine learning and to ease
us into AMR. The data is presented in Table 1.1. The first three columns
correspond to the features and each of them describe atmospheric attributes
of today’s weather. The features are the amount of rain, humidity level, and
percentage of sunshine for a particular day. The class variable is the weather
condition for the next day given a particular day. A decision tree classifier
can be constructed based on observing the pattern between the features and
class variable. For example, based on the data, we might predict that there
is rain tomorrow given the average amount of rain today was greater than
2mm. An example of a decision tree classifier might look like one given in
Figure 1.2. Evidently, the tree appears to be constructed in a fairly ad hoc
manner.

In the context of our study, the class variable corresponds to the modu-
lation type. The set of feature variables is extracted from the transmitted
signals. The modulation type and feature variables are further described in
Sections 2.1 and 2.3 respectively. Figure 1.3 shows that the classifier receives
the signal before being processed by the heater device. As the transmitted
device can transmit more than one type of modulation, the classifier’s job is
to identify the correct modulation. In fact, the classifier is integrated within
the receiving device. Classifiers are described further in Section 3.1.

A feature-based tree classifier using strategically engineered features is

2

Chapter 1. Introduction

Rain Humidity Sunshine Weather Tomorrow

1mm 82% 9% Cloudy
3mm 85% 40% Rainy
0mm 80% 80% Sunny
1mm 84% 5% Cloudy

..

Table 1.1: Weather prediction example. The feature variables are amount of
rain, humidity level, and percentage of sunshine today. The class prediction
variable is the weather for tomorrow consisting of rainy, cloudy, or sunny.

Tomorrow
rainy

Tomorrow
cloudy

Tomorrow
sunny

Tomorrow
sunny

Input Feature Variables

Rain today > 2mm

Humidity today > 81%

Sunny percentage> 10%

Yes No

Figure 1.2: A classifier for the weather prediction data. Avg stands for
average.

implemented in [2]. This method is explained in 3.2. Similar to the clas-
sifier used in the weather prediction example, the features are chosen in a
fairly ad hoc manner. Therefore, in this project, we extend the approach by
implementing a classification tree that considers many more combinations
of features and thresholds in constructing the tree. We further consider the
random forest classifier that takes a consensus of predictions from numer-
ous classification trees. The classification tree and random forest classifiers
are described in Sections 3.3 and 3.4 respectively. We also implement an
expanded list of features that improve the predictive performances of these
classifiers described in Section 2.3.3. The papers in [3, 4] provide an overview
of common feature variables and classification algorithms applied to AMR

3

1.1. Other Related Work

tasks. The two papers also summarize the type of features that improve
different classifiers in AMR. For example, [4] presents a compact overview
of available features and classifiers used in AMR which assists in choosing
the appropriate algorithms for intended applications. In this project, we
implement classifiers to predict six different waveforms as well as identify
signal from noise as described in Section 3.5.

Signal

Transmitted
signal

Received
signal

Device 1 Device 2

AMR
Classifier

Figure 1.3: Example of signal transfer between two devices with classifier
installed.

1.1 Other Related Work

Although this project involves only tree-based methods, we now describe
other non tree-based methods that are also often used in AMR tasks. An
artificial neural network (ANN) is implemented in [5]. In fact, three ANNs
are used in total to classify six types of digital modulation signals. For
simplicity, let us identify these modulations using integers from 1 through
6. The method classifies modulations 1 and 2 separately, and modulations
3 and 4 as well as 5 and 6 together as shown in Figure 1.4.

A comparison between a feature-based tree (more description in Sec-
tion 3.2) and ANN is also described in [5]. A disadvantage of ANN is the
interpretation of the model. For example, it is difficult to determine how
the prediction would change given we modify the values of some features.

Support vector machines are also used as described in [6]. The method
identified 16 different modulations. In addition, [4] provides an overview of
many methods in automatic modulation recognition.

4

1.1. Other Related Work

Features ANN 1

Modulation 1

Modulation 2

Modulations 3 and 4

Modulations 5 and 6

ANN 2

ANN 3

Modulation 3

Modulation 4

Modulation 5

Modulation 6

Figure 1.4: The visualization of using three ANNs to classify six modula-
tions.

5

Chapter 2

Data Simulation

We first describe the transmission of the signals for six different waveforms
and corrupting the signals at the receiver. Simulations are performed in the
Communications Toolbox of MATLAB [7]. Next, we show how the signals
are preprocessed. Finally, we provide details about the features that are
extracted from the signals.

2.1 Transmitting Signals

Recall that we are interested in the devices that use the 868 MHz fre-
quency band which are found in the Zigbee network. These devices generally
transmit six different modulation types. Three of the modulations include
on-off keying (OOK), binary phase-shift keying (BPSK) and offset quater-
nary phase-shift keying (OQPSK). Each of these have a carrier frequency of
868.3 MHz which is just the frequency of the radio signal as it propagates
from the transmitter to receiver device, for example in the introduction sec-
tion, from the temperature to heater device. The other three modulations
are the binary frequency-shift keying (BFSK) operating at carrier frequen-
cies of 868.3 MHz, 868.95 MHz, and 868.03 + b · 0.06 MHz, where 0 ≤ b ≤ 9,
respectively. These are used in the wireless meter-bus specification which is
a section of the device, and according to this specification, we denote the
three modulation types as BFSK-A, BFSK-B, and BFSK-R2, respectively.
Figure 2.1 provides a visualization of the differences between three general
types of modulations, and where each of the six waveforms in our study
resides on. OOK belongs to amplitude shift keying (ASK) where the signal
has zero amplitude when the input is zero. Evident from the figure, fre-
quency shift keying (FSK) affects the frequency of the signal for different
inputs, whereas phase shift keying (PSK) affects the phase of the signal for
different inputs.

6

2.1. Transmitting Signals

- OOK

- BFSK-A
- BFSK-B
- BFSK-R2

- BPSK
- OQPSK

Figure 2.1: Behaviors of the modulations. OOK belongs to amplitude shift
keying (ASK), BFSK-A, BFSK-B, and BFKS-R2 belong to frequency shift
keying (FSK), and BPSK and OQPSK belong to phase shift keying.

2.1.1 How to Transmit the BFSK-A Modulation

We describe the procedure in transmitting the BFSK-A modulation. The
other modulations are transmitted similarly (more details can be found in
[2]). We first describe the specification of the BFSK-A modulation. The data
rate is 16,384 bits per second which represents the amount of data that can
be transferred from one device to another in seconds as data is represented
as a stream of bits. Furthermore, Manchester encoding is applied to each
bit as shown in Figure 2.2. As shown in (a), a 1 bit becomes symbols of
0 and 1. Note that we are referring the 0 and 1 values as symbols rather
than bits, because technically the symbols are generated from the bits. In
(b), we see the symbols generated from applying Manchester encoding on
a bit sequence of 1, 0, and 1. Applying Manchester encoding, we obtain a
symbol rate (Rs) of 32,768 symbols per second (by multiplying the data rate
by 2). Moreover, the sampling frequency (fs) is 6.25 MHz, so the number
of samples per symbol (sps) is

sps =

⌈
fs
Rs

⌉
= 191 samples per symbol (2.1)

The samples per symbol is important and determines length of the bit
stream. In addition, the observation window size is 512 samples which
signifies the number of samples per transmitted signal. Also, the binary

7

2.1. Transmitting Signals

frequency shift keying modulates at two different frequencies depending on
the symbol. The frequency separation (fd) defines the difference in the
frequency as follows:

f1 = fc − fd
f2 = fc + fd

(2.2)

where f1 and f2 correspond to the two different frequencies with a difference
of 2fd.

0

1

1

0

0

1

1

0

1

(a)

(b)

0

1 1

0 0

1

Figure 2.2: Depiction of Manchester encoding on bits of data. In (a), the
figure shows that a 1 bit become a 0 and 1 symbol.

Now that we have described the specifications of the BFSK-A modula-
tion, we show how a signal is transmitted. Remember that a single bit is
spread into two symbols by the Manchester encoding. Focusing on a single
symbol, the digitized transmitted signal (s[k]) consists of two forms:

• If the symbol is 0, then

s[k] = cos

(
2πf1

k

fs

)
+ jsin

(
2πf1

k

fs

)
. (2.3)

• If the symbol is 1, then

s[k] = cos

(
2πf2

k

fs

)
+ jsin

(
2πf2

k

fs

)
. (2.4)

8

2.2. Obtaining the Received Signal

where k = 0, 1, 2, . . . , 190 for a length of 191 because the samples per symbol
is 191. Since the observation window size is 512 samples, we only need 2
bits of data for a total of 4 symbols to transmit one signal.

To transmit a signal, we randomly generate two bits of data as in 0 or 1,
and then apply Manchester encoding to obtain 4 symbols. For each symbol
we apply the equations 2.3 and 2.4 to obtain 764 samples (4 symbols by 191
samples per symbol). We then take the first 512 samples as described by our
window size of 512 samples. We re-use the s[k] notation and refer to it as a
single the transmitted signal for samples k = 1, . . . , 512. See Figure 2.3 for
an example of a transmitted BFSK-A signal with data bits 0, 0 and symbols
0, 1, 0, 1.

Symbol 0
Frequency f1

Symbol 1
Frequency f2

Symbol 0
Frequency f1

Figure 2.3: Example of transmitted BFSK-A signal where the data bits are
0, 0 and the symbols are 0, 1, 0, 1.

2.2 Obtaining the Received Signal

At the receiver, the signals are mixed to a low intermediate frequency. One
reason in using an intermediate frequency is to improve the performance in
which a radio receiver identifies a signal. In other words, it is useful in the
encoding and decoding of the radio signals in the stages of amplifiers, filters,
and detectors. It does not directly affect the automatic modulation recog-
nition (AMR) task we are studying, but we should be consistent with how
the rest of the device is integrated, and use the same intermediate frequency
throughout. Therefore, for our numerical results presented in Section 4,

9

2.3. Feature Extraction

we apply down-conversion on the carrier frequency (fc) by 867.3 MHz, i.e.,
the intermediate frequency for OOK modulation would be 1 MHz. Down-
conversion means subtracting the frequency by 867.3 MHz. Furthermore,
if we denote the intermediate frequency by fif , then fif = 1 replaces fc in
Equation 2.2. The signal at intermediate frequency is sampled with sam-
pling frequency fs, resulting in the discrete-time signal r[k], where k is the
discrete-time index. As in [2], we apply a sampling frequency fs = 6.25 MHz.
The received signal is expressed as

r[k] = gs[k] + n[k] , (2.5)

where s[k] is the subtracted and sampled transmitted signal, n[k] is white
Gaussian noise with variance σ2n, and g is a fading channel gain. An example
of the fading channel gain arises from objects obstructing the direct signal
path between the transmitter and receiver, and is expressed as follows:

g = |c1|ei2πc2 (2.6)

where c1 is a value sampled from a standard normal distribution and c2 is
sampled from a uniform distribution with parameters 0 and 1. Denoting the
variance of s[k] by σ2s , we define the signal to noise ratio (SNR) as σ2s/σ

2
n.

Further details regarding the six communication signals are provided in [2].
The task of AMR is to determine from the received signal r[k] which of

the six modulation formats has been used in s[k]. To this end, features are
computed from r[k] and then used in a classifier. The features and classifiers
applied in previous and our AMR approaches will be introduced next.

2.3 Feature Extraction

This section describes the preprocessing of the received signals, followed by
how features are computed.

2.3.1 Preprocessing

The task of AMR begins by preprocessing N samples of the sampled received
signal in 2.5. Following [2], we adopt N = 512 and generate via discrete
Fourier transform (DFT) the spectral representations

R[k] =

N−1∑
i=0

r[i]

µr
e−j2π

ik
N , k = 0, . . . , N − 1 (2.7)

10

2.3. Feature Extraction

and

A[k] =

N−1∑
i=0

|a[i]|
µa

e−j2π
ik
N , k = 0, . . . , N − 1 , (2.8)

where (H{·} denotes Hilbert transformation and j is an imaginary number.)

a[i] = r[i] + jH{r[i]} , i = 0, . . . , N − 1 (2.9)

is the analytic received signal and

µa =
1

N

N−1∑
i=0

|a[i]|, µr =
1

N

N−1∑
i=0

|r[i]|. (2.10)

According to the Matlab documentation [8], the Hilbert transformation re-
turns the original sequence with a 90 ◦ phase shift. This simply means, for
example, that sines are transformed into cosines. The equation, A[k], is the
DFT of the normalized absolute analytic signal. The analytic signal is re-
quired in computing some of the features such as the transformation based
features in Section 2.3.3.

2.3.2 Features From [2]

Let the features required in the feature-based binary tree in [2] be denoted
as m1, m2, m3, m4, and m5. Feature m1 is computed as follows,

m1 = max(|A[k1]|) +max(|A[k2]|) (2.11)

where 1 ≤ k1 ≤ 7 and 25 ≤ k2 ≤ 27. Next, we compute m2 and m3:

m2 =
A[k2]

max(A[k1])
(2.12)

m3 =
|R[k4]|
R[k3]

(2.13)

where k3 is defined as the index of the maximum value of |R[k]| and k4 is
the second largest value with at least four indices away from k3. Finally,

m4 =

⌊
k3 + k4 + 1

2

⌋
, (2.14)

and

m5 =

∑m4+B2/2
k=m4−B2/2

|R[k]|∑m4+B1/2
k=m4−B1/2

|R[k]|
(2.15)

where B1 = 36 and B2 = 18.

11

2.3. Feature Extraction

2.3.3 Additional Features

In this section, we implement additional features for the AMR. The type of
features we describe are commonly used in AMR problems, e.g. cf. [4, 9–11].

Transformation Based Features

The first set of proposed features is related to the spectral representation of
the analytical signal. More specifically, we compute the maximal squared
magnitude frequency component

γmax = max
k=0,...,N−1

1

N
|A[k]|2. (2.16)

Since γmax corresponds to amplitude variation of signals [4], this feature
is useful in discriminating between OOK and the PSK/FSK modulations,
because OOK is the only amplitude shift keying modulation. Therefore,
the only modulation we expect amplitude variation is of course, OOK. Fur-
thermore, the maximum value of the DFT of the 2nd and 4th power of the
analytical form is computed, i.e.,

Γn = max
k=0,...,N−1

1

N

N−1∑
i=0

|a[i]|ne−j2π
ik
N , (2.17)

for n = 2 and n = 4. The features, Γ2 and Γ4 are useful in classification of
PSK signals. In particular, these features discriminate BPSK and OQPSK
modulations from the remaining modulations. Similar to the amplitude
variation case, we expect that the only modulations to obtain phase variation
are BPSK and OQPSK.

Higher-Order Cumulant Features

Each modulation has a different in-phase and quadrature (I-Q) component
which is often represented by a constellation diagram. For example, Fig-
ure 2.4 depicts constellation diagrams for BPSK and OQPSK. The x and y
axes represent the in-phase and quadrature components of the modulation
respectively. For instance, the two circles labeled with 0 and 1 for BPSK
represent the symbols, and indicate the two phases with a shift separation of
180 ◦. The four circles of the constellation diagram for OQPSK represent its
four symbols and the 90 ◦ shift separation. In fact, the I-Q components are
related to the real and imaginary components of the signal [9]. The in-phase
component is shown on the x-axis which also resembles the real component of

12

2.3. Feature Extraction

(a) Binary Phase Shift Keying (BPSK) (b) Offset Quadrature Phase Shift Keying (OQPSK)

Figure 2.4: Constellation diagrams for BPSK and OQPSK.

the modulation. Similarly, the quadrature component is shown on the y-axis
which also resembles the complex component of the modulation. This leads
us to why we are computing the higher-order cumulant (HOC) features.
The HOC features are based on the non-linear combinations of the real and
imaginary components of the analytical signal as shown in Equation 2.18
below. By computing the higher-order cumulant (HOC) features, we can
capture the real and imaginary parts of the signal, which in turn discrimi-
nates different modulations based on the I-Q components and constellation
diagrams.

At this point, we calculate the real and imaginary parts of the analytical
signal from Equation 2.9, and denote either parts as xi[0], xi[1], . . . , xi[N−1].
A signal vector is represented as Xi = {xi[0], xi[1], . . . , xi[N − 1]} for some
i. For all combinations of Xi, i = 1, . . . , 4 based on the real or imaginary
parts of the analytical signal, we compute the following equations:

CX1X2 =
1

N

N−1∑
k=0

x1[k]x2[k]

CX1X2X3 =
1

N

N−1∑
k=0

x1[k]x2[k]x3[k]

CX1X2X3X4 =
1

N

N−1∑
k=0

x1[k]x2[k]x3[k]x4[k]− CX1X2CX3X4

− CX1X3CX2X4 − CX1X4CX2X3

(2.18)

Xi, i = 1, . . . , 4 can be either the real or imaginary signal vector of the

13

2.3. Feature Extraction

normalized analytical signal a[k]/µa. As an example, we can compute the
real part of the analytical signal and denote it as a signal vector X1, and
imaginary part as X2. Using X1 and X2 we compute CX1X2 . The cumulants
are also called the time-averaging approximations of the second, third, and
fourth order cumulants.

Magnitude Spectrum

The last set of proposed features consists of the magnitude spectrum, |R[k]|
for frequency indexes of k = 45 to k = 160. These features are particularly
useful in detecting the BFSK-B modulation, as it is modulated at a higher
carrier frequency than the remaining modulations. Figure 2.5 depicts the
magnitude spectrum for each of the modulations at a SNR of 11 dB. At the
best of our knowledge, the collection of these features has not been used
in any AMR tasks, therefore we did not expect a major impact in terms
of performance on the classifiers. However, our analysis in Section 4.2 begs
differently. It turns out that many of the magnitude spectrum features
contributed towards the random forest classifier based on Figure 4.6. We
summarized all the features in the Table 2.1.

0

50

100

150

200

0 100 200
Discrete−time index k

|R
[k]

| S
pe

ctr
um

Modulation
OOK
BPSK
OQPSK
BFSK−A
BFSK−B
BFSK−R2

Figure 2.5: Magnitude spectrum, |R[k]| at SNR of 11 dB. The x-axis corre-
sponds to the discrete-time index.

14

2.3. Feature Extraction

Table 2.1: Summary of feature variables.
Description Features

Features from [2] m1, m2, . . . , m5

Transformation-based γmax, Γ2, Γ4

Higher-order cumulant CII , CIQ, CQQ, CIII , CIIQ, CIQQ, CQQQ,
CIIII , CIIIQ, CIIQQ, CIQQQ, CQQQQ

Magnitude spectrum {|R[k]| | k = 45, . . . , 160}

15

Chapter 3

Implementation

We now turn to the use of the features in the classification methods. We
first briefly discuss the choice of a training data set and review the imple-
mentation of the feature-based tree (FBT) from [2]. Then we present the
proposed classification tree (CT) and random forest (RF) classifiers. Finally,
we describe the modifications required in order to detect pure white noise
signals.

3.1 Training Data

In the introduction, we mentioned that the class variable is the modulation
type, while the feature variables are just the ones summarized in Table 2.1.
Let us recall the data set from the simple weather prediction example shown
in Table 1.1. This data set represents the training data, as the decision tree
classifier was constructed on the basis of this data set. In Section 4, we
compare the three classifiers: FBT, CT, and RF using a training data set
generated from a simulation, obtaining P values for each feature variable
per modulation and SNR value. We provided a visualization example of the
process of generating a single observation in Figure 3.1. The signal is first
transmitted from the device, and then noise is added to the signal to get
our received signal, r[k]. At this point, r[k] is preprocessed, and features
are extracted from the signal. So, in the example, the received signal is
first obtained by transmitting a signal using an OOK modulation, and then
noise is added to the signal in order to obtain a SNR of 10 dB. Using the
received signal and some pre-processing steps as described in Section 2.3.1,
all the features are computed. This represents a single observation. This
same process is performed P times for every modulation and SNR. Section 4
describes the specification of P and range of SNR considered. We provided
an example of the data in Table 3.1. The modulation column corresponds to
the class variable, while the columns to the right of the modulation column
correspond to the feature variables.

16

3.2. Feature-Based Binary Tree

Device 1 r[k]
Add
noise

Received
signal

Pre-
processing

All
Features

OOK

SNR = 10 dB Transmitted
signal

Figure 3.1: Process of generating one observation of the training data.

Table 3.1: Example of training data. The modulation corresponds to the
class variable, and the columns to the right of modulation from m1 to R[160]
correspond to the feature variables.

Modulation m1 m2 m3 ... R[160]

OOK 190 0.05 0.3 ... 2.5

OOK 186 0.12 0.21 ... 1.8

OOK 172 0.08 0.25 ... 3.1

..

BFSK-R2 15.3 0.64 0.03 ... 5.4

BFSK-R2 14.4 0.54 0.08 ... 3.3

BFSK-R2 89.7 0.35 0.12 ... 2.48

3.2 Feature-Based Binary Tree

The feature-based binary tree (FBT) classifier utilizes features from [2], and
selects thresholds that discern different modulation types. The construction
of the FBT is very similar to the decision tree classifier for the weather
prediction example described in the introduction section. The first split
of the tree is chosen based on the feature m1. Next, a threshold value of
m1 must be determined. Figure 3.3 shows the distribution of values of m1

using a boxplot, where the red lines indicate the minimum and maximum
values of BPSK and BFSK-A, and the purple line shows the gap between the
min and max of BPSK and BFSK-A respectively. It is easy to see that m1

values above a certain threshold discern OOK and BPSK from the remaining
modulations. Therefore, it makes sense to choose a value that is within the
gap formed by the minimum m1 value of OOK or BPSK and the maximum
m1 value of OQPSK, BFSK-A, BFSK-B, and BFSK-R2 as shown by the

17

3.2. Feature-Based Binary Tree

X[n]

𝑚1 > 𝑡𝑚1

OOK

𝑚3 > 𝑡𝑚3
 𝑚2 > 𝑡𝑚2

𝑚5 > 𝑡𝑚5

𝑚4 > 𝑡𝑚4

BPSK

BFSKB

BFSKR2

BFSKA OQPSK

Yes No

Figure 3.2: Flowchart of feature-based tree depicting features and decision
thresholds at interior nodes. Modulation types reside at leaf nodes.

purple line. In [2], not all the modulations were used to determine this gap,
and only BPSK and BFSK-A were chosen for m1.

In order to determine the threshold, a worst-case analysis between m1

values of BPSK and BFSK-A is performed. Figure 3.4 presents the maxi-
mum and minimum value of m1 for BPSK and BFSK-A respectively. Similar
to the boxplot visualization, the gap between the min value of m1 of BPSK
is compared with the max value for BFSK-A using a purple line. As we
can see from the figure, as SNR increases, the gap shrinks. The threshold
is chosen as the value of m1 where the gap reaches zero. In [2], not all the
modulations were used to determine this gap, and only BPSK and BFSK-A
were chosen for m1. Figure 3.4 depicts the worst-case analysis between m1

values of BPSK and BFSK-A. The gap reaches zero when the two lines in
the plot intersects. The intersection appears approximately at 4.7 dB with
a threshold of tm1 = 47. Consequently, signals with m1 > 47 are classified
as either OOK or BPSK, while signals with m1 ≤ 47 are classified as one of
the remaining modulations. The thresholds for m2, . . . ,m5 are determined
similarly, see [2] and Table 3.2. Additional details for the threshold deter-
mination can be found in [2]. The tree is presented in Figure 3.2. Finally, a
prediction is made by traversing down the tree until a leaf node is reached.

18

3.2. Feature-Based Binary Tree

Figure 3.3: Boxplot visualization of m1 for each modulation.

Feature Threshold

1 m1 47.23

2 m2 0.42

3 m3 0.23

4 m4 89.68

5 m5 0.71

Table 3.2: Thresholds determined by FBT.

19

3.2. Feature-Based Binary Tree

−6 −4 −2 0 2 4 6 8 10 12 14
20

30

40

50

60

70

80

Signal to Noise Ratio in dB

F
ea

tu
re

 m
1

Worst−case analysis on Feature m1

Min BPSK Max BFSKA

Figure 3.4: Worst-case analysis plot of m1. Solid line corresponds to the
maximumim of m1 of BFSK-A. Dashed line corresponds to the minimum of
m1 of BPSK.

20

3.3. Classification Tree

3.3 Classification Tree

The first classifier we propose is a classification tree (CT). Similar to the
FBT, it also selects thresholds using a set of features. However, features and
thresholds are selected automatically based on maximizing homogeneity in
modulation types at nodes. Recall that a prediction using FBT is made by
traversing down the tree until a leaf node is reached. Intuitively, increasing
homogeneity at leaf nodes also increases predictive accuracy as we show
in the following example. Consider Figure 3.5 where the parent node of
a tree consists of blue and red balls. Moreover, assume that a split can
only be made by a vertical line. Indeed, the split shown by the dashed
line splits the balls into two groups so that each child node only contains
one of each color. If we draw a ball from the left child, we could predict
correctly that the ball is blue 100% of the time. Similarly, for the right child.
However, without splitting into the child nodes, and by randomly picking a
ball from the parent node, we are unsure whether it is a red or blue ball.
This example illustrates the importance of splitting by homogeneity and
optimizing predictive performance.

Figure 3.5: Intuitive example of tree split. There are two groups: red and
blue balls.

21

3.3. Classification Tree

3.3.1 Classification Tree Implementation

Let us denote the training data set as D := {(yi,xi)}Ti=1 where yi is a
modulation outcome, xi = (xi,1, xi,2, . . . , xi,M)T are the features, and T is
the total number of observations of the training data. Let us denote Y as
the modulation from randomly drawing one outcome from D . As described
in Section 3.1, the modulations of the training data set only consists of 6
different modulations corresponding to OOK, BPSK, ..., BFSKR2, where
we denote as 1, 2, ..., 6 respectively for simplicity. The probability mass
function (PMF) of Y is:

P (Y = l) = pl =
|{i : yi = l}|

T
.

where the numerator resembles the number of observations corresponding
to modulation l. We seek splits that maximize homogeneity as described
in the example related to Figure 3.5. Therefore, we quantify homogeneity
through an impurity function i(Y) on the random variable Y:

i(Y) = −
∑
l

pllog(pl) (3.1)

This impurity function has two very important properties which describes
homogeneity as described in Definition 2.5 of [12]. Based on the context of
our problem, the first property ensures that i(Y) is maximum only when
pl = 1

6 for all l. The second property ensures that i(Y) is minimum only
when pl = 1 and pl′ = 0 for l′ 6= l for all l. In other words, minimizing
i(Y) achieves maximal homogeneity and maximizing i(Y) achieves minimal
homogeneity.

Of course, the goal of CT as described by Figure 3.5 is to determine a
split that maximizes homogeneity of modulation types. Let us define the
feature variable Xu for u = 1, 2, . . . ,M similar to Y taking on values xi,u
with probability 1

T for all i, u. Let us define Y |Xu < t as a conditional
random variable describing the left split using feature u and threshold t.
The PMF of Y |Xu < t is:

P (Y = l|Xu < t) =
|{i : yi = l

∧
xi,u < t}|

|{i : xi,u < t}|

where the numerator corresponds to the number of observations with mod-
ulation l and values of feature u less than t. The denominator is the number
of observations of values of feature u less than t. The impurity can be sim-
ilarly computed as in Equation 3.1 i(Y |Xu < t). The same computation

22

3.3. Classification Tree

applies for the right split so that we obtain impurity i(Y |Xu ≥ t) for the
same split for the right.

Now that we have the impurity of the left and right splits, we have a good
idea of how to achieve good splits. Clearly, it makes sense to minimize a
combination of i(Y |Xu < t) and i(Y |Xu ≥ t), because that way we maximize
homogeneity in terms of modulations. We might be inclined to just use the
sum of i(Y |Xu < t) and i(Y |Xu ≥ t) as a splitting criteria to choose the
optimal split. However, Figure 3.6 shows that this criteria is not good. The
figure presents two trees with the same data but different splits. Similar to
Figure 3.5, a split can be made by a vertical line in a node. So, if we were
to minimize the sum of i(Y |Xu < t) and i(Y |Xu ≥ t), then clearly, the right
tree is better than the left tree based on the impurity scores computed in
the figure beside each node. However, the left tree seems to have a better
split, because there are more blue balls grouped in the left child as opposed
to the right child. Another problem is that the sum of i(Y |Xu < t) and
i(Y |Xu ≥ t) which is 0.693 is greater than i(Y) = 0.474, and so we are
inclined to not split at all. However, it is clear that at least one of these
splits improves our objective of increasing homogeneity since it partitions
the majority of blue balls to the left child. Therefore, we use the expectation
of the impurity as a result of splitting as the criteria which takes a weighted
average of i(Y |Xu < t) and i(Y |Xu ≥ t) instead of the sum. We describe
this splitting criteria next.

Let us define a random variable that captures the impurity from splitting
by t at Xu using:

I =

{
i(Y |Xu < t), p(Xu < t)

i(Y |Xu ≥ t), 1− p(Xu < t)
(3.2)

where p(Xu < t) =
|{i:xi,u<t}|

T representing the proportion of observations
with values of feature u less than t. Furthermore, the expectation of I
denoted as E[I] is:

E[I] = p(Xu < t)i(Y |Xu < t) + p(Xu ≥ t)i(Y |Xu ≥ t) (3.3)

Minimizing the expectation of I, i.e. E[I] maximizes the homogeneity of the
modulations of the groups produced by the split, because E[I] is propor-
tional to the impurity, and minimizing the impurity maximizes homogeneity
as we have discussed. Furthermore, in Figure 3.6, we obtain E[I] = 0.252
and E[I] = 0.35 for the left and right trees, respectively. Therefore, this cri-
teria correctly chooses the left tree, and E[I] < i(Y) implies that splitting

23

3.3. Classification Tree

(a) (b)

i(Y) = 0.474 i(Y) = 0.474

i(Y|X<t) = 0 i(Y|X<t’) = 0 i(Y|X>t) = 0.693 i(Y|X>t’) = 0.64

Figure 3.6: Conditional expectation of impurity example.

indeed decreases the impurity solving both the problems discussed related
to Figure 3.6. Therefore, the feature u and threshold t that minimizes E[I]
is the feature and threshold chosen for each split of the tree.

After the first split, the same procedure of finding a split u and t is
recursively applied to each of the left and right child nodes replacing D
with the left and right child region of the split respectively. The algorithm
stops splitting when the minimum number of observations at nodes which
we specify at the start of the algorithm is reached or all the modulations in
a node are the same. Typically, the minimum number of observations at a
node is 5 to 20. A smaller number results in a larger tree and increases the
complexity of the tree, whereas a larger number results in a smaller tree and
decreases the complexity. We use a minimum number of observations in a
node of 10 in the CTs we built. We refer to these nodes as the leaf nodes.

Predictions are made at the leaf nodes based on the majority vote of
modulations in that node. We provide an example of the execution of the
CT algorithm in the following. Additional details on CTs can be found in
[13].

24

3.3. Classification Tree

i(Y) = 0.69

Figure 3.7: Example of data with two feature variables denoted as x1 and
x2. The class variable takes on two values of either blue or red. There are
53 observations in total, where 26 are labeled as blue and 27 as red.

3.3.2 Example

A simple example to illustrate the algorithm used to construct a CT as
shown in the sequence of Figures 3.7 to 3.10. Figure 3.7 depicts the example
data set. There are two feature variables denoted as X1 and X2 in the
figure, and one class variable with two possible values: red or blue. There
are 53 observations in total, where 26 of them are labeled as blue and 27
of them red. Let us re-use notations and define the training data set for
this example as D = {(yi,xi)}53i=1 contains all the points in the figure. The
random variable Y for the class variable takes on two values: blue and red.
Based on D , the PMF of Y has pblue = 26

53 and pred = 27
53 for blue and red

points respectively. The impurity i(Y) is computed to be 0.69.
The optimal split occurs at x1 anywhere from 8.7 to 10, since this split

results in both regions with highest proportion of each color (blue on the
left region and red on the right). Therefore, we arbitrarily choose x1 = 9.5.
We compute i(Y |X1 < 9.5) = 0.271 and i(Y |X1 >= 9.5) = 0.264. We also
compute E[I] = 0.268 for this split. We next determine the split on the left
and right regions as we recursively apply the same method of finding the
splits on the two regions.

25

3.3. Classification Tree

Threshold:
x1 = 9.5

i(Y|X1<t) = 0.271 i(Y|X1>t) = 0.264

E[I] = 0.268

Figure 3.8: The optimal split is depicted by the dashed dark green line
obtained by choosing variable x1 = 9.5. The entropy of the left and right
region indicated by the purple rectangle windows are computed to be 0.271
and 0.264 respectively.

Consider the left region of the split as shown by Figure 3.9. For the sake
of brevity, let us re-use notations to denote the current left region of data
as D ← Dlower and treat this region as the current training data. Likewise
we define random variables Y , Xu < t for u ∈ {1, 2} and some threshold t
for this new data set D as before.

It is clear that a value of x2 between 13 and 14 would be optimal since the
two regions would only contain either blue or red points. The impurity of the
region was computed previously to be 0.271. However, we need to determine
the PMF of Y |X2 < 13.5 and Y |X2 ≥ 13.5. The impurity i(Y |X2 < t) = 0
is computed for the lower region. Likewise, the impurity i(Y |X2 > t) = 0
for the upper region is computed. Thus, E[I] = 0. Since the proportions
of blue/red points are 1 in each region, the splitting stops as per algorithm
instructions.

The same process occurs on the right side as shown in Figure 3.10. We
found the split x2 = 5 as the split and designate it as the right child split of
x1 = 9.5. Similar to the left side, the algorithm stops. Ultimately, the tree
of this simple example is displayed in Figure 3.11.

26

3.3. Classification Tree

Threshold:
x2 = 13.5

E[I] = 0

i(Y|X2>t) = 0

i(Y|X2<t) = 0

Figure 3.9: The optimal split is depicted by the dashed dark green line
obtained by choosing the variable x2 = 13.5. The entropy of the bottom
and upper region indicated by the purple rectangle windows are computed
to 0 for both regions.

Threshold:
x2 = 5

E[I] = 0

i(Y|X2>t) = 0

i(Y|X2<t) = 0

Figure 3.10: The optimal split is depicted by the dashed dark green line
obtained by choosing the variable x2 = 5. The entropy of the bottom and
upper region indicated by the purple rectangle windows are computed to 0
for both regions.

27

3.3. Classification Tree

x

𝑥1 > 9.5

blue

𝑥2 > 13.5 𝑥2 > 5

red blue

Yes No

red

Figure 3.11: The tree structure of the simple classification tree algorithm
shown in the sequence of figures 3.7 to 3.10.

28

3.3. Classification Tree

The CT classifier algorithm performs a more extensive search of the
features and thresholds in constructing the tree than FBT. In particular, the
CT allows the features to be selected any number of times, and it considered
all variables and thresholds at each split. It also used a loss function, for
which contributed towards constructing the tree. Classifications are made
by traversing down the tree until a leaf node is reached. A new observation
xi (using the same notation as we defined D) is classified to one of the six
possible modulations using the tree we constructed in Figure 3.12 for the
simple CT example we described.

3.3.3 Pruning

The complete tree is typically quite large which means the classifier is very
adaptive towards the fitted data and has a high complexity. For complexity
restriction of a model, a regular behavior in small neighborhood of the input
space such that for all input points x sufficiently close to each other in some
metric, Ĉ(x) groups together the leaf nodes of the tree [13]. The complexity
of a model generally induces a bias-variance trade-off of estimating the true
observation C(x) by Ĉ(x) such that a high complexity tends to increase the
variance (see Figure 2.11 of [13]). The reason for pruning is to reduce the
complexity of the tree. We describe the procedure next.

Pruning is performed by selecting the subtree with minimal splits while
minimizing the entropy of each split. The strategy is to grow the tree
entirely as we described in Section 3.3, and then prune the tree using a
cost-complexity pruning parameter. The implementation involves comput-
ing subsets of the tree and taking the subset of tree with the lowest misclassi-
fication error and penalizing larger trees through a 10-fold cross-validation.
We are not going to go over cross-validation as there are many resources
describing the method such as in [14]. The pruned version of the simple
classification tree example might look like the tree of Figure 3.12. For more
information about pruning classification trees, we refer the readers to [13].

We apply the CT using features from Section 2.3.2 without and with
the additional features introduced in Section 2.3.3. Figure 3.13 illustrates
an example of a CT based on the features from [2]. Evidently, the CT is
considerably larger than the FBT, and features can appear more than once
for the CT. Training was carried out through the rpart package in R [15].

29

3.4. Random Forest

x

𝑥1 > 9.5

red 𝑥2 > 13.5

blue

Yes No

red

Figure 3.12: Pruned example of the simple classification tree example.

3.4 Random Forest

Random forest (RF) utilizes a method known as bagging to average over
numerous classification trees obtained by bootstrapping the original data
[13]. By doing so, the RF leverages from the predictions acquired from all
CTs so that the consensus achieves a more accurate prediction. We describe
the implementation in the next paragraph. In addition, we show later that
the RF improves the success rate over the CT in Figures 4.1 and 4.4 in
Section 4.

The CTs are trained on bootstraps of the original training data set (D)
where the bootstrap sample is the same size as D . The implementation
of RF begins by first drawing a bootstrap sample from D . Let us call the
bootstrap sample, D∗. A CT is trained using D∗. Another difference is that
at each split of the CT, the classifier only uses a subset of the original M
features for that particular split. In other words, the node defined by that
split can only be one of the features in the subset. In addition, no pruning
is performed on the trees. We repeat the process ntree times where ntree is
a parameter, and we explain this later in this section. At the end, we have
ntree number of CTs which together forms a RF.

Classification of a new observation xi is performed similarly to the CT,
except we have ntree CTs. Therefore, we have ntree classifications. Let us
refer to the bth classification made by the bth tree to be Ĉb(x). In statistics,
the mode is the value that appears most often in a set of data. The classi-
fication of the RF is Ĉrf (x) = mode{Ĉb(x)}ntree

1 which is the majority vote
prediction of the ntree trees.

30

3.4. Random Forest

r[k]

Yes No
𝑚3 > .44

𝑚5 > .72

BFSK-B

BFSK-B

𝑚4 > 109

𝑚1 > 68 𝑚4 > 94

𝑚1 > 43

𝑚3 > .71

𝑚5 > .6

BFSK-R2 OQPSK

𝑚1 > 67

OOK 𝑚3 > .29

BFSK-R2 𝑚5 > .7

BFSK-R2 𝑚4 > 110

BFSK-A BFSK-B BPSK OQPSK

BFSK-A OOK

Figure 3.13: Flowchart of classification tree depicting features and decision
thresholds at interior nodes. Modulation types reside at leaf nodes.

3.4.1 Advantages of Random Forest

We have mentioned earlier that bagging involves the average over the CTs,
but (Ĉrf) above is based on the majority vote of the prediction estimators

of the CTs (Ĉb) instead of the average. Intuitively, the idea of utilizing a
collection of trees to improve the predictive accuracies are similar in both
the regression and classification case. The analysis underlying the majority
vote and the discrete prediction case is more complex and we revert the
reader to [13] for an in-depth discussion of the topic, and we analyze the
continuous case based on regression instead in the following.

Using the same notation for classification, the estimator of the classi-
fication is Ĉb(x) which is random in terms of bootstrapping the training
data. The main advantages of the RF comes from reducing the variance
and instability from fitting a single CT.

The Ĉb(x)’s from constructing each CT of a RF are not independent,

31

3.4. Random Forest

because we are using the same algorithm in constructing each CT in the
RF which also means that the pairwise correlations between the CTs are
positive. Say, the variance of Ĉb(x) is σ2, in other words,

V ar(Ĉb(x)) = σ2.

Clearly, if the trees are independent, then V ar(Ĉrf (x)) = 1
ntree

σ2. However,
the trees are positively correlated as mentioned. Let us use ρ to refer to the
pairwise correlation between two trees. In other words, Cor(Ĉi(X), Ĉj(X)) =
ρ for some i = 1, 2, . . . , ntree and j 6= i. The variance of the prediction esti-
mator of RF is:

V ar(Ĉrf (x)) =
1

n2tree
(ntreeσ

2 + n(n− 1)σ2ρ)

=
σ2

ntree
+

(ntree − 1)

ntree
σ2ρ

= σ2ρ+
σ2

ntree
− σ2ρ

ntree

= σ2ρ+
1− ρ
ntree

σ2

(3.4)

As ntree increases the second term becomes small, so the variance is roughly
σ2ρ. This is an improvement since −1 ≤ ρ ≤ 1. Moreover, the less corre-
lated the trees are the lower the variance, so at the end we are limited by
the correlation of the trees which ultimately limit the advantages of bag-
ging. This issue brings us back to why the RF algorithm involves randomly
selecting m < M features at each split rather than all M features at each
split. Intuitively, selecting only subsets of the features allow the trees to be
different which leads the trees to be less correlated. If we use all features
at each split, then the trees would be very similar, hence, the prediction
estimators would be very correlated.

3.4.2 Random Forest Implementation

Based on [13], fully growing the trees seldom cost much, and as a result,
we have one less parameter to optimize. Therefore, we allow the trees to be
grown to maximal depth. Model fitting was carried out using the random-
Forest package in R [16].

The parameters that require tuning in RF are the number of trees, ntree,
and the number of randomly selected features, mtry. The number of trees
should be large enough so that predictions are made multiple times for each

32

3.4. Random Forest

observation [17]. Recall that each bootstrap sample retains roughly 63% of
the original data, since the procedure involves randomly sampling from the
same data set with replacement. In the worst-case scenario of not having
enough trees is that not all the data have been used, which is bad since we
always want to consider using all the training data.

A suitable value is around 500-1000 according to [13]. A large value
of ntree often does not overfit or hinder the predictive performance of the
model. However, as we have mentioned, ntree needs to be large enough
so that predictions are made multiple times for each observation. In our
experiments, we used ntree = 850 trees. The inventors of RF suggest mtry
to be approximately equal to the square-root of the number of features [13].
Hence, if we consider only m1, . . . ,m5, then mtry = 2, while the use of all
the features from Table 2.1 leads to mtry = 12.

3.4.3 Random Forest Feature Selection

A feature selection step is initially carried out on all the features by training
an RF, and then selecting the features with the highest importance. The
importance of a feature is computed by the sum of the information gain at
decision thresholds subject to all the trees [13].

Information gain is defined as:

info = i(Y)− E[I] (3.5)

where i(Y) and E[I] are described in Equations 3.1 and 3.3. The importance
measure for a single classification tree is expressed [13] as

Impu(T) =
J−1∑
t=1

infot1(v(t) = l) (3.6)

where infot represents information gain at a particular node t, and u rep-
resents the feature chosen at that split. Furthermore, J − 1 is the number
of interior nodes in the tree. The variable importance for a random forest
model takes the average of importance for the N classification trees.

Impu =
1

N

N∑
n=1

Impu(Tn) (3.7)

The importance of each feature is ranked, and the optimal features are
selected. This selection step filters out irrelevant features that could lead to
overfitting.

33

3.5. Modifications for Noise Detection

We can select the top 40-70% of features based on the importance. We
used a 10-fold cross validation to verify the fraction of features that seem
to give the lowest misclassification error. We tried 40%, 50%, 60%, and
70%, and we found that 40% provides the optimal performance in terms
of misclassification error. For feature selection, it is sufficient to use 300-
500 trees, because the most relevant features often appear numerous times
across all the trees. It also speeds up the selection step. We used 400 trees
for feature selection.

3.5 Modifications for Noise Detection

In addition to the six modulation types, the classifiers are also trained to
detect noise from signal. It is important to detect noise so that signals
identified as noise are not processed at the receiving device. Processing
a signal that is noise is a waste of resource for the receiver. Referring to
Equation 2.5 of Section 2.1, the additional noise signal is computed using
r[k] = n[k]. The training data described in Section 3.1 should also include
the noise signal data under the column header ’Modulation’. In other words,
the noise signal is included as a seventh class variable for the classifiers.

To predict the additional class, we include a feature representing the
energy of the signal denoted by en to the training data set. The noise
variance, σ2n is defined earlier in Section 2.1.

e =
1

N

N∑
i=1

|x[i]|2

en =
e

σ2n

(3.8)

The training data set is similar to the data set shown in Table 3.1, except
there is one more class class variable and one more feature. The new training
data set is shown in Table 3.3.

For FBT, we use en to add a new split in the tree. From Figure 3.14, we
can see that values of en for the noise signal is consistently lower than the
six modulations. This indicates that en is a useful feature at recognizing
noise from the modulations. We performed a worstcase analysis based on
en. For example, if en is less than some threshold, then we classify the
signal as noise. If the signal is greater than some threshold, then we classify
the signal as one of the six modulations. After this initial classification, the
tree is constructed the same as before as in Figure 3.3.

34

3.5. Modifications for Noise Detection

Table 3.3: Example of training data with noise class. The modulation cor-
responds to the class variable, and the columns to the right of modulation
from m1 to en correspond to the feature variables.

Modulation m1 m2 m3 ... R[k] en

OOK 190 0.05 0.3 ... 2.5 34.9

OOK 186 0.12 0.21 ... 1.8 32.3

OOK 172 0.08 0.25 ... 3.1 29.6

..

BFSK-R2 15.3 0.64 0.03 ... 5.4 13.5

BFSK-R2 14.4 0.54 0.08 ... 3.3 15.2

BFSK-R2 89.7 0.35 0.12 ... 2.48 16.1

..

Noise 56.2 1.3 0.8 ... 3.5 34.5

Noise 40.1 1.2 1.1 ... 3.2 32.7

Noise 38.5 0.8 0.9 ... 1.8 33.3

From the worstcase analysis plot of Figure 3.15, we observe that at SNR
of approximately -8 dB, the maximum value of en intersects with the min-
imum value of OOK. The threshold value of en is calculated to be 1.0257.
Figure 3.16 shows the structure of the tree when the noise signal is included.

For the CT and RF classifiers, we simply input the new training data
set as in Table 3.3 into the same algorithms we described in Sections 3.3
and 3.4.

35

3.5. Modifications for Noise Detection

OOK BPSK OQPSK BFSK-A BFSK-B BFSK-R2 Noise

e
n

Figure 3.14: Boxplot visualization of en for each modulation.

Signal to Noise Ratio in dB
-10 -5 0 5 10 15

F
ea

tu
re

 e
n

1

2

3

4

5

6

7

Min OOK
Max Noise

Figure 3.15: Worstcase plot of en where minimum value of OOK is compared
to maximum value of the noise signal for each SNR.

36

3.5. Modifications for Noise Detection

X[n]

𝑚1 > 𝑡𝑚1

OOK

𝑚3 > 𝑡𝑚3
 𝑚2 > 𝑡𝑚2

𝑚5 > 𝑡𝑚5

𝑚4 > 𝑡𝑚4

BPSK

BFSKB

BFSKR2

BFSKA OQPSK

Yes

Yes

Yes

Yes

Yes

No

No No

No

No

en > 𝑡𝑒𝑛

Noise

Yes

No

Figure 3.16: Tree structure of FBT with noise signal included.

37

Chapter 4

Analysis and Results

In this section, we compare the predictive performance of the FBT, CT, and
RF classifiers using different sets of features. We also show the difference
in performance when including the noise signal as an additional class. To
this end, we measure the success rate (SR) of each classifier by applying it
on a new data set that was not used for training, and then recording the
proportion of correct predictions obtained by the different classifiers.

We generate a training data set based on P = 200 values for each feature
per modulation between SNR from −32 dB to 16 dB in steps of 2 dB. The
testing data set is generated similarly to training, except P = 1100 is used.

0.15
0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

−32 −28 −24 −20 −16 −12 −8 −4 0 4 8 12 16
SNR (dB)

Su
cc

es
s

R
at

e

Classifiers
Random Forest
Classification Tree
Feature−Based Tree

Figure 4.1: Success rates of models based on features from [2] as a function
of SNR generated in ggplot2 [18].

4.1 Analysis on Features From [2]

In the first experiment, we only use the features from [2] and six modulation
types. Figure 4.1 shows the SR of each classifier. We observe notable gains

38

4.1. Analysis on Features From [2]

for both RF and CT over FBT for SNRs ranging from about −15 dB to
1 dB. RF shows the overall best performance with improvements in SR over
FBT of, for example, 32% and 13% (where all improvements are expressed
in absolute value) at −5 dB and 0 dB, respectively. Likewise, CT obtained
improvements of 20% and 8% at −5 dB and 0 dB, respectively. All three
classifiers obtain a SR of approximately one for SNR > 3 dB.

In the second experiment, we use the same features as the first experi-
ment, but the noise signal is included as a seventh class for prediction. As
shown in Figure 4.2, the results are similar to the first experiment involving
six classes. The RF classifier outperforms the other two classifiers from SNR
of -15 dB to 3 dB, and CT outperforms the FBT for the same range of SNR.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

−32 −27 −22 −17 −12 −7 −2 3 8 13
SNR (dB)

Su
cc

es
s

R
at

e

Models
Random Forest
Classification Tree
Feature−Based Tree

Figure 4.2: SRs based on the features from [2] and prediction for seven
classes.

Although the structure of the CT is quite different from the FBT as
shown in Figures 3.2 and 3.13, if we fit the CT with only high SNR data
of > 1 dB, then the structure is almost equivalent to the FBT. The CT
fit with SNR > 1 dB and FBT are shown side-by-side in Figure 4.3. The
structure of the tree at depth two is identical with only minor differences.
The nodes highlighted in orange emphasize that m5 is chosen before m4

for the CT. Based on the left subtree after splitting by m3, small values
of m5 predict OQPSK for both trees. Similarly, small values of m4 predict
BFSK-A and large values of m5 predict BFSK-B for both trees. From this
analysis, it appears that the FBT classifier is similar to the CT if the training
data set includes only high SNR signal data. If we recall from Section 3.2

39

4.2. Analysis on All Features

and Figure 3.4, as SNR increases, it becomes more difficult to separate the
modulations as shown by how the two lines in the worst-case plot intersect.
As a result, using only high SNR data, it is much quicker to achieve maximal
homogeneity at the leafs of the tree leading to a smaller tree.

r[n]

𝑚1 > 47

OOK

𝑚3 > 0.23 𝑚2 > 0.42

𝑚5 > 0.71

𝑚4 > 89.7

BPSK

BFSKB

BFSKR2

BFSKA OQPSK

Yes No

r[n]

𝑚1 > 55

OOK

𝑚3 > 0.23 𝑚2 > 0.51

𝑚4 > 84

𝑚5 > .74

BPSK

OQPSK

BFSKR2

BFSKB BFSKA

Yes No

Figure 4.3: The left flow chart represents the FBT with computed threshold
values. The right chart corresponds to the CT fit at a high SNR. The main
difference is m5 is used before m4 with the distinction highlighted in orange.

4.2 Analysis on All Features

In the third experiment, we apply RF and CT based on all the features
described in Section 2.3 and summarized in Table 2.1 for six modulations.
The corresponding SRs are shown in Figure 4.4. RF obtained a SR of
approximately one for SNR > −2 dB. Comparing the SR curves for RF
and CT from Figures 4.1 and 4.4, we note the significant additional gain
due to the inclusion of the proposed features. The RF and CT classifiers
outperform the FBT classifier by a large margin based on a wide SNR range
from about −25 dB to 3 dB. Furthermore, the RF classifier achieves best
SRs with the gap to CT widened compared to Figure 4.1.

Similar to the third experiment, the fourth experiment includes the noise
signal as the seventh class to the data, and we found the results to be very
similar. The predictive performance for each classifier is shown in Figure 4.5.

The variable importance plot based on computing the importance of
each feature as in Sections 3.4 and [13] is presented in Figure 4.6. Vari-

40

4.2. Analysis on All Features

0.15
0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

−32 −28 −24 −20 −16 −12 −8 −4 0 4 8 12 16
SNR (dB)

Su
cc

es
s

R
at

e

Classifiers
Random Forest
Classification Tree
Feature−Based Tree

Figure 4.4: Success rates of each model proportional to SNR using all fea-
tures.

able importance is described in Section 3.4.3. The features are ordered
by variable importance. From the figure, features with labels beginning
with Rk correspond to the magnitude spectrum |R[k]|. In fact, |R[k]| at
k = 83, 84, 85and, 136 are within the top 7 features selected which may be
because BFSK-B is modulated at a higher intermediate frequency than the
remaining modulations or the fact that only subsets of features are used at
each split causes one of these features to be chosen if one is not present. The
magnitude spectrum of each modulation type is displayed in Figure 2.5. The
figure shows several peaks occurring at discrete-time index k of 83, 84, 85,
and 136. Finally, from the variable importance figure, we notice that trans-
formation based features γmax and γ2 also have high importance. Similarly,
all features from [2] have high importance.

41

4.2. Analysis on All Features

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

−32 −27 −22 −17 −12 −7 −2 3 8 13
SNR (dB)

Su
cc

es
s

R
at

e

Models
Random Forest
Classification Tree
Feature−Based Tree

Figure 4.5: SRs based on the all features and prediction for seven classes.

42

4.2. Analysis on All Features

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●

●
●

●
●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

Xk83
m3

Xk84
gammaMax

m1
Xk136

Xk85
Xk81
Xk82

m5
m2

Xk139
Xk89

gamma2
m4

Xk86
Xk93
Xk73
Xk77
Xk80

Xk132
Xk138

snrdbHat
gamma4

enull
Xk140
Xk137

Xk79
Xk92
Xk74
CRR
Xk87

CII
Xk134
Xk133

CIIII
Xk78

Xk135
Xk88
Xk95
Xk90
Xk76
Xk91
Xk72
Xk71

CRRRR
Xk75
Xk96
Xk94

CRRII
Xk97
Xk70
Xk69

Xk131
Xk142

Xk98
Xk67

Xk144
Xk143
Xk100
Xk101

Xk66
Xk99

Xk160
Xk65

Xk105
Xk51

Xk129
Xk141
Xk106
Xk152

Xk61
Xk119
Xk150

Xk68
Xk130

Xk47
Xk48
Xk46
Xk45
Xk52

Xk151
Xk108
Xk104

Xk56
Xk153
Xk149

Xk54
Xk146
Xk114
Xk120
Xk159
Xk128
Xk115
Xk110

Xk63
Xk118
Xk126
Xk117

Xk59
Xk60
Xk50

Xk127
Xk124
Xk111
Xk109
Xk113

Xk64
Xk53

Xk157
Xk145
Xk147
Xk148
Xk107
Xk154
Xk155
Xk116
Xk158

Xk49
Xk58

Xk121
Xk55

Xk125
Xk102
Xk123

Xk57
CIII

CRRI
CRRR

Xk62
Xk103
Xk122
Xk112

CRII
Xk156

CRI
CRRRI

CRIII

0 100 200 300 400 500

Importance

F
e

a
tu

re
s

Threshold
●

●

Top 40%
Bottom 60%

Figure 4.6: Variable importance based on the RF using all the features.
43

4.3. Further Discussion

4.3 Further Discussion

Note that the CT classifier does not reach an SR of one even for very high
SNRs. One possible explanation is that its thresholds have been influenced
by highly noisy training data with low SNR. This observation is supported
by the notable improvements that CT achieves over FBT at low SNRs
(. −2 dB). Finally, note that, as expected, all classifiers perform almost
perfectly well for large SNR levels (SNR & 3 dB). Hence, the advantage of
our proposal is most evident for the more challenging situations of moderate
to low SNRs.

The price to be paid for this performance gain is an increase in com-
putation time and storage requirement. The computational complexity of
CT and RF classifiers largely depends on the structure of the data, much
like many sorting algorithms depend on the initial distribution of the data.
That being said, it is still worthwhile to describe the complexity in gen-
eral. The computational complexity of training a basic implementation of
a CT classifier for T training samples and M features is O(MT log(T)) as
described on page 199 of [19]. In fact the most basic brute-force approach is
O(MT 2 log(T)), but is easier to explain first, and then we will explain how
the implementation can be improved to be O(MT log(T)).

For each feature variable m, we must compute the entropy using each
observation which in total has T observations. Since the observations are
not ordered, we must check each remaining T − 1 observations. Therefore,
it takes T (T − 1) operations to compute the minimum entropy possible
for feature m. Therefore, one split takes roughly MT 2 operations. If we
assume that the tree is bushy (in other words it doesn’t degenerate to a few
long branches) as in the average case of CT, then the depth of the tree is
roughly log(T). Thus, in total the number of operations to construct the
CT is MT 2log(T) in this brute-force approach. However, if we sort each
feature by its observations prior to constructing the tree we can achieve
O(MTlog(T)).

The average sorting of the observations of one feature is O(T log(T))
(as is obvious using a standard approach such as quicksort or mergesort).
In determining the optimal split, for each feature m, we only need to scan
through the observations once in order to find the minimum entropy since
the observations are already sorted and we do not need to compare with
the remaining operations. So, each split takes roughly MT operations, and
assuming a bushy tree the process of constructing the tree is O(MTlog(T))
on average.

The computational cost of training a RF classifier is intuitivelyO(ntreeMT log(T))

44

4.3. Further Discussion

since the algorithm involves constructing ntree CTs. Training a FBT classi-
fier only costs O(T log(T)), because the features are selected prior to thresh-
old determination (and sorting a single feature variable takes O(T log(T)) on
average). Therefore, the CT and RF classifiers require O(M) and O(ntreeM)
times more operations to train than a FBT, respectively.

The computational cost of a single prediction for the FBT is approxi-
matelyO(log(M)) evaluations (where log(M) corresponds to a binary search).
The CT classifier with pruning requires O(log(M)) and without pruning re-
quires O(log(N) log(M)) operations. Therefore, a prediction for RF requires
O(ntree log(N) log(M)) operations.

Since the number of thresholds is fixed for the FBT, the storage cost
is O(1). Likewise, the CT with pruning often results in a near constant
depth tree regardless of the size of the data set. So, the storage cost of
CT with pruning is O(1), and therefore the additional storage requirement
of CT is relatively modest. However, the RF requires O(ntree log(N)) in
storage requirement as the trees are not pruned. In order to facilitate the
implementation of RF, considerable memory allocation may be required.

45

Chapter 5

Conclusion

In this paper, the classification tree and random forest classifiers are intro-
duced for modulation recognition in the 868 MHz band. The classification
tree allows features to appear more than once in the tree leading to an
improvement in prediction performance over the feature-based binary tree.
The random forest classifier leverages the predictions from a set of classifi-
cation trees which further improved performance over a single classification
tree. Moreover, an additional set of features commonly used in modulation
recognition is experimented on and found to improve upon the proposed
methods. Based on our findings, both classification tree and random for-
est attained higher success rates in modulation prediction relative to the
feature-based binary tree method when the signal is corrupted with white
noise.

Future studies include the addition of more training data for the classi-
fiers, along with an analysis on success rate as a function of the number of
observations trained on. This analysis could lead to the implementation of
more scalable methods. For example, we plan to implement a map-reduce
version of random forest. It would allow data from a distributed file system
to be streamed into memory where individual classification trees are fitted
and stored in temporary disk until the algorithm is complete.

46

Bibliography

[1] J. F. Kurose, Computer networking: a top-down approach featuring the
Internet. Pearson Education India, 2005.

[2] M. Kuba, K. Ronge, and R. Weigel, “Development and implementation
of a feature-based automatic classification algorithm for communication
standards in the 868 mhz band,” in Global Communications Conference
(GLOBECOM), 2012 IEEE, pp. 3104–3109, IEEE, 2012.

[3] O. A. Dobre, A. Abdi, Y. Bar-Ness, and W. Su, “Survey of auto-
matic modulation classification techniques: classical approaches and
new trends,” Communications, IET, vol. 1, no. 2, pp. 137–156, 2007.

[4] A. Hazza, M. Shoaib, S. Alshebeili, and A. Fahad, “An overview of
feature-based methods for digital modulation classification,” in Com-
munications, Signal Processing, and their Applications (ICCSPA), 2013
1st International Conference on, pp. 1–6, IEEE, 2013.

[5] A. K. Nandi and E. E. Azzouz, “Algorithms for automatic modulation
recognition of communication signals,” Communications, IEEE Trans-
actions on, vol. 46, no. 4, pp. 431–436, 1998.

[6] M. H. Valipour, M. M. Homayounpour, and M. A. Mehralian, “Au-
tomatic digital modulation recognition in presence of noise using svm
and pso,” in Telecommunications (IST), 2012 Sixth International Sym-
posium on, pp. 378–382, IEEE, 2012.

[7] I. The Mathworks, MATLAB and Communications System Toolbox Re-
lease 2014b. Natick, Massachusetts, United States, 2014.

[8] M. U. Guide, “The mathworks,” Inc., Natick, MA, vol. 5, p. 333, 1998.

[9] M. D. Wong and A. K. Nandi, “Automatic digital modulation recog-
nition using artificial neural network and genetic algorithm,” Signal
Processing, vol. 84, no. 2, pp. 351–365, 2004.

47

Bibliography

[10] Z. Wu, X. Wang, Z. Gao, and G. Ren, “Automatic digital modulation
recognition based on support vector machines,” in Neural Networks
and Brain, 2005. ICNN&B’05. International Conference on, vol. 2,
pp. 1025–1028, IEEE, 2005.

[11] F. Xie, C. Li, and G. Wan, “An efficient and simple method of mpsk
modulation classification,” in 2008 4th International Conference on
Wireless Communications, Networking and Mobile Computing, pp. 1–3,
2008.

[12] L. Breiman, “Bagging predictors,” Machine learning, vol. 24, no. 2,
pp. 123–140, 1996.

[13] T. Hastie, R. Tibshirani, and J. Friedman, The elements of statistical
learning, vol. 2. Springer, 2009.

[14] R. Kohavi et al., “A study of cross-validation and bootstrap for accu-
racy estimation and model selection,” in Ijcai, vol. 14, pp. 1137–1145,
1995.

[15] T. M. Therneau, B. Atkinson, and B. Ripley, “rpart: Recursive parti-
tioning,” R package version, vol. 3, no. 3.8, 2010.

[16] A. Liaw and M. Wiener, “Classification and regression by randomfor-
est,” R news, vol. 2, no. 3, pp. 18–22, 2002.

[17] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5–
32, 2001.

[18] H. Wickham, ggplot2: elegant graphics for data analysis. Springer New
York, 2009.

[19] I. H. Witten and E. Frank, Data Mining: Practical machine learning
tools and techniques. Morgan Kaufmann, 2005.

48

	Abstract
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Other Related Work

	Data Simulation
	Transmitting Signals
	How to Transmit the BFSK-A Modulation

	Obtaining the Received Signal
	Feature Extraction
	Preprocessing
	Features From kuba2012development
	Additional Features

	Implementation
	Training Data
	Feature-Based Binary Tree
	Classification Tree
	Classification Tree Implementation
	Example
	Pruning

	Random Forest
	Advantages of Random Forest
	Random Forest Implementation
	Random Forest Feature Selection

	Modifications for Noise Detection

	Analysis and Results
	Analysis on Features From kuba2012development
	Analysis on All Features
	Further Discussion

	Conclusion
	Bibliography

